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between these two atoms is over 5 A. The iodine atom, 
however, is closely associated with five oxygen atoms, 
two of which belong to the water molecules. They were 
all  found at  distances varying  from 3-52 to 3.62 A, 
and  are shown by  dotted lines in Fig. 1. 
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The non-negativity criterion is that  the volume A(~). d~o, for which the expected ~ lies in the interval 
(~, ~ +de), shall vanish for ~ < 0. However, providing the overlap is negligible, the expected volume 
A(~) within one cell is known for all e values. It  is possible to set up general A criteria, since A can be 
studied for arbitrary phase angles. Some preliminary examples of the use of the A concept are given 
and the results compared with known results. 

The first a t tempts  to solve the phase p rob lem- -  
among which the Harker  & Kasper  (1948) and Sayre 
(1952) methods are outstanding--were n0n-statistical 
in nature.  Since then, s tar t ing with Zachariasen (1952), 
interest  has been focused more and more upon statis- 
t ical  methods (e.g., Klug (1958)). 

A disadvantage of the stat ist ical  approach is tha t  
i t  often lacks physical  perspicuity,  and it  is often 
difficult  to visualize how much  of the exper imental  
and general informat ion has real ly been used to ad- 
vantage.  The hypotheses are often difficult to assess 
and  sometimes even to accept. For instance, of funda- 
menta l  interest  in most stat ist ical  a t tempts  to solve 
the sign problem is the probabi l i ty  distr ibut ion ~ ( E )  

(and analogous joint  probabi l i ty  distributions).  The 
functions ~ are usual ly  derived on the assumption 
that the atomic parameters are random variables 
subject  only to symmet ry  relations. However, the 
a priori probabi l i ty  of a certain value r(n) m a y  range 
from zero to un i ty ;  in fact, the probabi l i ty  of any  one 
atomic-coordinate value is a function of all  other 
coordinates (cf. e.g., Ber taut  (1955)). However elab- 
orate the assumptions made about  in tera tomic vec- 
tors, some sort of a priori assumption must  be made. 
In  the following paper (LSfgren, 1961) it  will be shown 
tha t  these assumptions cri t ically influence certain 
expressions tha t  are therefore unpredictable.  

Ins tead of statistically deriving the properties of 
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reciprocal~space functions (E, IEI 2 etc.), one may star t  
with direct-space functions, such as g~ (for notations, 
see L6fgren (1960)), the Patterson function, etc. 
From this starting point, relations which have either 
been arrived at statistically or are original can be 
derived exactly. (Several such examples do exist, 
furnished notably by Cochran, e. g. (1958).) We shall 
restrict ourselves here to a certain property of the g~ 
function and give examples of its use. 

A direct space equivalent of ~ ( E )  is V-1A(g~). 
A(g~)dgQ is defined as the volume (within one cell) 
for which gQ (which is assumed to be real) falls in the 
interval (g~), g~ + dg~). The A expected for correct phases 
is evidently not a function of atomic positions, provid- 
ing tha t  overlap is negligible, and it is then predictable 
if the cell contents are known. In fact, one then has 

N 

A = 27 A(~),  (1) 
n = l  

where A(n) is the atomic contribution. 
In order to s tudy A (a) for arbitrary phases, it can 

be transformed, e.g., according to: 

~(o~) = f~_ A.g~dge= ~ gQ~dv(r)=gF(~)(O) , (2) 

where 
1 

Z gF(hl)gF(h2).. ,  gF(h~) . .qF(')(h) _ V u _  1 h l + h 2 + . . . + h v = h  

For correct phases and a completely resolved gQ"(r), 
one can postulate the value (use (1)): 

~/v. post. "= A.gOVdg~ = 27 A(n)g~dgo 
- -oo  n = 1 , 1 - - ( ~  

= 27 g~(n)(r)dv(r) = 27 g f~g(0 ) ,  (3) 
n = l  n = l  

where gf~n~(0) is analogous to gF(~)(0). 
Of special practical interest is v = 3  (cf. Cochran 

(1952), Cochran & Douglas (1955), (1957), and L6fgren 
(1960)). 

Equations (2) and (3) are eas i ly  generalized by 
substituting a polynomial in g~ for g~ (cf. Woolfson 
(1958a, b)). For reasons to be made clear elsewhere, 
the following function is of fundamental interest: 

T (cQ= A ~ ,  g0" dv(r) 

I I = ( l / V )  ~ 27 a,(h).gF(~)(h)l , (4) 
v = l  

where, by definition, 

A~(r) = (1/V) ~" a~(h), exp [ - 2~rih. r ] ,  

(a~(h) being arbi trary real functions of h or constants) 
and . indicates convolution. Specifically for constant 
a /s ,  the operation A~ .  is equivalent to a~ × and (4) 
is a straightforward generalization of (2). (The integral 
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A , ~ d 

analogous to the second member of (2) can be inter- 
preted as an alternative representation of ~(c~)--  
equation (4)--even for a~'s dependent on h, but this 
interpretation is not essential to the present context.) 

For correct phases and negligible overlap, (4) can 
be evaluated according to" 

Tpost. = A~, * gO dv(r) 

= 27 A~ . g0(n) dv(r) 

- ( l / V )  27 2 ;  ~" -, "(~) - -  ~.gj(n) (h) . (5) 
n = l  h u = l  

I t  can be proved tha t  ~post.(al, a 2 , . . . ,  am) has a 
non-trivial (Za~#0)  minimum if, and only if, the 
system 

m 
27 a ~(") ~.gg(,) ( h )=0  (n= 1, 2, . . . ,  N) (6) 

~'~1 

has a non-trivial solution. This system is solvable if 
the number of k inds  of atoms, M < m - 1 .  The 
resulting minimum must be zero, cf. (5) and (6). 
T ( a )  then assumes an absolute minimum in a space, 
for correct a's.  

If M > m -  1 it is still possible to minimize ~tpost. for 
each h, e.g., after fixing any one a,. If we allow m=2, 
and fix al and assume the atoms of Cochran & Woolf- 
son (1955), we find the following, par t ly  using their 
symbols" 

~[-/(o¢)=(1/V)Zh [ U(h)-(es/e4)U(h')U(h-h')h" 2 

~/TJpost. ~--- ( 1 / V ) { [ C 2 ~ 4 - -  C 2 ] / c 4 }  ~.~" 1 , (7) 
h 

where ~7 1 is the number of h's summed over. Sim- 
h 

ilarly fixing a2" 

I ~(a)=(1/V) ~ [ -(ea/e2)U(h)+ U(h')U(h-h') w ~" 

= 1 .  (8) 

Equations (7) and (8) should be compared with the 
results of Cochran (1955), § 4. These results ((7) and (8)) 
are not valid if, e.g., h 's with large [UJ's are selected 
which would imply an unresolved structure. I t  is easily 
realized {apply Wilson's (1949) statistics to the 'inten- 
sities' ]2:a~.gF(~)(h)l 2) tha t  they might be approx- 
imately true, e.g., for h's in an Ih] interval. 

Equations (2) and (3), (4) and (5) are susceptible to 
systematic development (especially for partial series) 
and simplification to be given elsewhere. The A con- 
cept will make it clear under which circumstances the 
T ( a )  minimum is unique and occurring for A =ZA(n). 
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The variance criterion, ( ( I -  27)~), is reconsidered in a slightly modified and generalized form. The 
approach is in terms of the Patterson function and permits a physical visualization of the criterion. 
The result is in agreement with standard statistical results in certain space groups only and with 
special assumptions. 

I t  is maintained that  because fundamental  statistical quantities like ~(E) critically depend on the 
unpredictable overlap in high order Q self-convolutes, they are quite generally useless. 

(A summary of conclusions is given at the end of this article.) 

As was stressed by L6fgren (1961), there is an  
advantage  of avoiding probabi l i ty  distr ibutions such 
as ~(]gF]) in deriving laws for reciprocal-space func- 
tions (for gF(h) see LSfgren (1960). We assume tha t  
gf(h),  corresponding to gF(h) for correct phases, is 
such tha t  g f (h )=g f ( -h ) ) .  Direct-space functions 
should be taken,  instead, as a start ing-point.  We shall  
thus s tudy  some aspects of the Pat terson function, gP. 

We star t  with- 

~ {gP( r ) -  CgPorigin(r) } dv(r) 
N 

= ( l / V ) 2  {IgF(h)] 2 C. 2 2 2 - f f ~ . ) ( h ) } ,  (1) 
h n = l  

where (cf. Lipson & Cochran (1953), p. 152) 

N 

gP( r )=  2 gP(n,m)(r-(r(~)-r(m))), (2) 
n, r n =  1 

with:  

gP(n,m)(r)=(1/V) Z, gf(n)(h).gf(m)(h).exp [ - 2 ~ i h . r ] ,  
h (3) 

and, further" 
N 

gPorigin(r) = ~ gP(n, n)(r) , (4) 
n ~ l  

and C is an  a rb i t ra ry  constant.  

Let  us suppose tha t  for certain n - m  pairs, 

r¢n) - r(m) = constant  vector = r (a); (5) 

i.e., r (a) are the different Pat terson peak positions. 
If  we fur ther  suppose tha t  the sums 

Z gP(n, m)(r - r (~)) 
n, m 

r (~) = co ns t  a n t  :~ 0 

are completely resolved for different ~t and completely 
resolved from (1 - C ) .  gPori~i,(r), we have, in the same 
manner  as in LSfgren (1961): 

~ { g P ( r ) -  C.gPorigin(r)} 2 dv(r) 

(1 - C) 2gP2origin(r ) dv(r) 

Z,~ ~ {n, "~'m gP(n'm)(r)}2dv(r) 

r (  ~=  c o n s t a n t . 0  

+ (l/V) ~ Z { ~ gf(n)(h).gf(m)(h)}2. (6) 
~t h n, m 

r (~ )=  c o n s t a n t  ~= 0 

If we assume for example  tha t  the  only causes of 

=(1 -c)~(1/v)2:{27 g/g.)(h)}~ 
h n 


